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Dynamics of inherent structure in supercooled liquids near kinetic glass transition
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Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 12 August 2000; published 27 August 2001!

We present a description of the dynamics of a supercooled binary Lennard-Jones liquid in term of the
potential landscape of the system. The slowing down of the dynamics in supercooled liquids near the kinetic
glass transition is related to the existence of basins in the potential landscape. The inherent structures that are
the local potential minima in the configuration space obtained by a quench process are employed to represent
the configurations of the basins. We present time correlation functions of the inherent structure, both the self
and the coherent part, as a function of wave vector. We also calculated the mean-square displacement, and the
non-Gaussian parameter of the van Hove self-correlation function. Compared with the dynamics of original
configurations, the short-time relaxation has almost been eliminated by the quench process. However, the
long-timea relaxations remain essentially the same. We conclude that the long-timea relaxation is the result
of cross-basin transition in the potential landscape in the configuration space.
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I. INTRODUCTION

It is well known that the relaxation dynamics of the s
percooled liquids near kinetic glass transition is a two-s
process. This characteristic feature has been shown by
mode-coupling theory@1,2#, computer molecular-dynamic
simulation @3#, and laboratory experiments involving glas
forming liquids~for review see@4#!. From the kinetic theo-
retic point of view, the short-time dynamics within a pic
second time scale is describable by the relaxation of the
particle motion within a cage formed by nearest-neighbor
particles in the liquid, which can be described by a norm
kinetic theory of liquid, taking into account the cage effe
@5#. The long-time dynamics (a relaxation! is pictured as the
collective relaxation of the initial cage and is insensitive
the specific short-time microscopic dynamics of the syst
within the cage@6#.

The potential landscape view of the dynamics of sup
cooled liquids near kinetic glass transition was presente
long time ago@7,8#. But recently it has attracted much atte
tions both from the dynamic and thermodynamic approac
@9–11#. According to these views, the slowing down of th
long-time relaxation process was related to the presenc
the potential basins in the configuration space and could
regarded as the configurational transitions between these
sins. The short-time relaxation was regarded as the expl
tion of the phase points of the system within the same
tential basin. The lowering of the temperature of the syst
does not affect the intrabasin movement too much, but
make the crossing between basins more difficult and t
consuming. We comment here that in the kinetic theore
picture, the long-time collective cage relaxation is not a lo
relaxation phenomenon, but should be considered globall
interbasin transitions in the potential landscape.

In order to study the long-time interbasin transitions in t
potential landscape, one has to introduce the inherent s
ture, which is defined as the local potential minima in t
configuration space, as the best configurational represe
tion of the corresponding basin@12#. Then, by studying the
changing of the inherent structure with time, one can elim
nate most of the short-time relaxation process within the
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sin and only focus on the long time interbasin relaxation. T
dynamics of inherent structure has been studied in differ
ways. The interbasin transition was identified by examin
the level changes of the energy of inherent structure@13#, the
mean square displacement of the inherent structure
shown without a plateau because of the lack of constrai
motions~rattling! within basins@14#. More recently, Schro-
der et al. @15# studied the self-time correlation functions o
the quenched configurations at one value ofk and at different
temperatures and got the conclusion that the long-time re
ation is due to the interbasin transitions in the potential la
scape. We know the interbasin transitions are the collec
motions of particles in the system. In order to have a clea
picture of the interbasin transitions, one has to investigate
collective motions by calculating the coherent correlati
functions of inherent structure in different length scales.

In this paper, we present the time correlation functions
the inherent structure, both the self and coherent part, at
ferent k values. The two-step relaxations with a plateau
between, shown in the time correlation function of the ori
nal configurations, change to one-step relaxations witho
plateau. This one-step decay curve can be characterized
stretched exponential function having the same relaxa
time t and similar stretch exponentb with the a relaxation
of the original configurations. This is a direct evidence fro
the coherent correlation function that thea relaxation in the
supercooled liquids is due to the relaxation of cross-ba
processes.

II. NUMERICAL SIMULATION

The model system for glass-forming liquids we studied
the well-known binary Lennard-Jones mixture introduced
Kob and Andersen@16,17#. Both types of classical particle
A andB have the same mass and interact by a Lennard-Jo
potential, i.e., Vab(r )54eab@(sab /r )122(sab /r )6# with
a,bP$A,B% and eAA51.0, sAA51.0, eAB51.5, sAB50.8,
eBB50.5,sBB50.88. In the following, all the results will be
given in reduced units, i.e., length in units ofsAA , energy in
units of eAA , mass in units of the mass of particleA or B,
which has been chosen as 1, and time in units
©2001 The American Physical Society02-1
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(msAA
2 /eAA)1/2. The Boltzmann constantkB has been set to

1. The simulation box mixed 800 particles of typeA and 200
particles of typeB. The size of the cubic box was held fixe
at L59.4 with a periodic boundary condition. The critic
temperature for a diverging relaxation time in this system
Tc50.435. In our simulation, the simulation time-step size
0.0015, the temperature is set atT50.446, coupled with a
Nose-Hoover thermostat@18#.

We denote the molecular-dymamics~MD! trajectory as
@rN(t),pN(t)#, with N the total number of particles. From
each saved configurationrN(t) at time t, the corresponding
inherent structurerNQ(t) was calculated as the local potenti
minima in the configuration space by the process of quen
The quench was accomplished by using a stand
conjugate-gradient minimization algorithm@19#. We studied
the two types of trajectories: unquenched and quenched
jectories, by comparing some meaningful dynamic quanti
calculated from these two trajectories. The mean square
placement between these two configurations^ur j (t)
2r j

Q(t)u2& gives the mean value of 0.0142 with a standa
deviation of 0.0015, which is related to the average size
trapping basin. The size of the trapping basin can also
characterized by the plateau value~about 0.03! of mean
square displacement~MSD! of unquenched configuration
discussed in the next paragraph. We can see these two v
are of the similar magnitude.

The mean square displacements~MSD! ^Dr 2(t)&
5^ur j (t)2r j (0)u2& of the unquenched configuration as
function of elapsed time is shown in Fig. 1 in a log-log plo
The MSD of quenched configurations, shown in the sa
figure, is calculated by replacing the configurationr (t) in the
formula of MSD by the quenched configurationrQ(t). The
existence of a plateau of the unquenched configura
shows the trapping effect of the system inside a basin in
potential landscape. For the quenched configuration,
MSD is a monotonic increasing function with time without

FIG. 1. The mean-square displacements~MSD! as a function of
elapsed time for both unquenched and quenched configurations
plateau that indicates the cage effects in the unquenched MSD
appears in the quenched MSD curves. They both show the s
long-time diffusion limit.
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plateau. This is because the quench process eliminates
system vibrational movement inside the trapping basin. A
large elapsed time segment in the diffusion regiont.1000,
the MSD’s of these two configurations overlap with ea
other showing the different motions between these two c
figurations, which are the small-distance vibrational mov
ment within the basin, can be ignored compared with
structural relaxation as a result of large distance excursio

We define the van Hove self-correlation function as@20#

Gs~r ,t !5
1

N K (
j

d@r1r j~0!2r j~ t !#L , ~1!

where the position of the jth particler j (t) can be a quenched
or unquenched configuration. For the convenience in the
lowing discussion without further explanation, the quantit
calculated from quenched and original unquenched confi
rations will be denoted with and without labelQ, respec-
tively. For the isotropic system, the van Hove self-correlat
function can be written as a function of radial distancer as
Gs(r ,t). Then, the quantity 4pr 2Gs(r ,t), integrated over the
solid angle, denotes the distribution function of particle d
placementr within time t. Compared with the distribution
function of displacement of unquenched configurations, F
2 shows that the quench process makes the distribution p
shift to the left and become sharper, indicating that the d
placement of quenched configurations is much less than
of the original configurations. This can also be seen from
MSD curve~see Fig. 1!, which is the second moment of th
distribution function. In the intermediate times (6,t,120),
the shape of 4pr 2Gs(r ,t) changes much slower than that
4pr 2Gs

Q(r ,t). This slower variation of the curve shape wi
time causes the existence of the plateau in the MSD curve
the long-time regime (t.120), the large displacements b
come more probable in both cases. At the largest timet
51350), the two curves@4pr 2Gs(r ,t),4pr 2Gs

Q(r ,t)# be-
come essentially the same. This can also be seen from
similar value of the non-Gaussian parametera2(t) ~Fig. 3! at
that time. The non-Gaussian parameter is defined as@21,22#

a2~ t !5
3^r 4~ t !&

5^r 2~ t !&2
21. ~2!

In the short-time free streaming and long-time diffusion lim
its, the van Hove self-correlation function is a Gaussian fu
tion with r @21#, then the non-Gaussian parametera2(t)50.
In the immediate time, the van Hove self-correlation functi
shows a clear non-Gaussian behavior. The non-Guassian
rameter of quenched configurations have a large value in
short time and intermediate time; only in the long time do t
values become similar as that of the unquenched config
tions.

III. RESULTS

We calculated the coherent time correlation function
density fluctuation by
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F~k,t !5
1

N (
i , j

^exp$2k•@r i~ t !2r j~0!#%&, ~3!

wherei, j denote the indices of the particles, and the confi
ration rN(t) can be quenched or unquenched. The ini
value of F(k,t) is the static structure factor,F(k,t50)
5S(k). Figure 4 shows the static structure factorS(k) and
SQ(k). The two curves display essentially the same first a
second diffraction peaks, but a significant difference at lar
k, where the quenched structure factor shows sharper p
than the original one. The similarity of the first two pea
indicates that the two configurations are similar at the len
scale r.0.5sAA , the quench process only changes the po
tions of the particles in the length scale of less than 0.5sAA .
This agrees with the MSD value between quenched and
quenched configurations discussed above. Since the stru
factor is an average function of the configurations, the m
smooth peaks at high-k value for the unquenched configur
tions indicate the more averaging effect due to the rattl
movement around the quenched configurations with a ra
small distance.

The normalized F(k,t)/S(k) and FQ(k,t)/SQ(k) are
shown in Fig. 5 atksAA56.68. TheF(k,t)/S(k) shows a

FIG. 2. The distribution function of the test particle displac
ments, 4pr 2Gs(r ,t), at different time segments. The van Hove se
correlation function isGs(r ,t)51/N^( jd@r1r j (0)2r j (t)#&. While
at the intermediate time segment (t56 –120), the time variation of
distribution functions of two configurations are quite different~see
text!, at the long-time segment (t.120), the time variations are
similar in the two configurations.
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normal two-step decay, with a short-time decay first to
plateau characterized by ak-dependent Debye-Waller facto
A(k) and then ana relaxation away from the plateau. Th
appearance of the Debye-Waller factor is the result of
cage effect, which constrains the system into a basin are
the configuration space. On the contrary, The curve
FQ(k,t)/SQ(k) shows a monotonic decay without a platea
The short-time decay in the original correlation function
eliminated by the quench process. The decay of the quenc
correlation function can be regarded as the system movem
by crossing different basins in the configuration space.

FIG. 3. The non-Gaussian parametersa2(t) in the intermediate
and long-time regime for the two types of configurations. While
the short-time regime, the non-Gaussian parameters of the two
figurations are quite different, at the long-time regime they co
verge to the same asymptotic limit.

FIG. 4. The structure factorS(k) and SQ(k), calculated from
unquenched and quenched configurations. Note that the first
diffraction peaks are essentially the same. But at the largek values,
the quenchedSQ(k) displays sharper higher-order diffraction peak
The inset shows the enlarged first diffraction peak region.
2-3



of

nc
n

h
in

h

ha
o

h
t
t
u
h
r

sin
a
l b

y

a
o

l
te
-

le

rt-
of

ent

e
e

n
e
r
th

ll
ct
ns
sti-
om-
ct
e is

on

tio
w

nt

h a

sig-
en-
y
here
with

C. Y. LIAO AND S.-H. CHEN PHYSICAL REVIEW E64 031202
To qualify and compare the long-time decay
F(k,t)/S(k) andFQ(k,t)/SQ(k), we fit the long-time part of
the correlation function with the stretched exponential fu
tion A(k)exp(2„t/t(k)…b(k)). Figure 6 shows that relaxatio
time t, stretch exponentb, and Debye-Waller factorA(k)
oscillate with the same period as the structure factor. T
agrees qualitatively with the result of extended simple po
charge~SPC/E! water@23# and~MCT! theory@24#. Compar-
ing the fitting results forF(k,t)/S(k) and FQ(k,t)/SQ(k),
the relaxation timest are essentially the same for all thek
values, the exponentb demonstrates a similar variation wit
k but a level difference forksAA.10. The Debye-Waller
factor for the quenched system is much closer to unity t
the unquenched system due to the elimination of the sh
time dynamics. We note that the thek dependence of the
Debye-Waller factor has been reduced and the oscillation
been damped compared with the unquenched system. Bu
k dependence of the relaxation time and stretch exponen
the quenched system is essentially the same as in the
quenched system. The difference between the quenc
Debye-Waller factor and the unity indicates that the sho
time dynamics is not eliminated completely or the ba
roughness of the potential surface in the configuration sp
cannot be reduced by the quench process. This point wil
discussed further.

The incoherent time correlation function studies the d
namics of a test particle, which is defined as

Fs~k,t !5^exp@2k•$r j~ t !2r j~0!%#&, ~4!

wherer j (t) is the position of the jth particle, which can be
quenched or unquenched configuration. The initial value
Fs(k,t50) is one. Figure 7 shows theFs(k,t) andFs

Q(k,t)
at differentk values.Fs(k,t) is found to display the typica
two-step relaxation, where the short-time decay is attribu
to the vibrational relaxation of particles with different fre
quencies within cages formed by neighboring partic

FIG. 5. The normalized coherent correlation functi
F(k,t)/S(k) and FQ(k,t)/SQ(k) at the reducedk value indicated.
While the unquenched configurations show a two-step relaxa
~fast and slow!, the quenched configurations show only the slo
relaxation.
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@25,26#. The long-time relaxation is separated from the sho
time regime by a plateau indicating the trapping effect
cages. As expected, the plateau ofFs

Q(k,t) disappears as the
result of the quench process to remove the rattling movem
that has been show in Ref.@15#.

The quantitative comparison of the two incoherent tim
correlation functions can be studied by fitting the long-tim
part with the stretched exponential functio
A(k)exp$2@t/t(k)#b(k)%. Figure 8 shows the relaxation tim
t(k), stretched exponentb(k), and the Debye-Waller facto
A(k). The relaxation time is essentially the same for bo
quenched and original configurations. Theb(k) increase to
the unity reaching diffusion regime ask decreases. The sma
difference of theb values of two configurations and the fa
that the Debye-Waller factor of the quenched configuratio
is less than one indicates that, in the temperature inve
gated, the long-time dynamics cannot be separated c
pletely from the short-time dynamics. This is a similar effe
as in the coherent correlation function, which means ther

n

FIG. 6. The relaxation timet(k), stretch exponentb(k), and the
Debye-Waller factorA(k) extracted from the normalized cohere
time correlation function,F(k,t)/S(k) and FQ(k,t)/SQ(k), by fit-
ting the long-time part of the respective correlation functions wit
stretched exponential function. While thet andb are essentially the
same for the two configurations, the Debye-Waller factors are
nificantly different. The quenched Debye-Waller factors are ess
tially unity at all k signifying that the system is not structurall
arrested in the quenched configuration. It should be noted that t
is k-dependent oscillation of all three parameters associated
variation ofS(k).
2-4
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DYNAMICS OF INHERENT STRUCTURE IN . . . PHYSICAL REVIEW E64 031202
another relaxation channel other than thea relaxation gen-
erated by the crossing-basin process. The existence
short-time decay channel can also be seen from the pres
of the initial rapidly increasing segment of the MSD curve
the quenched configurations. One of this short time de
channel could be the existence of the finer structures at
bottom of the potential basin. These finer structures h
small surface roughness that cannot be felt by the syste
that temperature. But when we quench the system, the re
ant minimum location can be one of the basins belonging
these finer structures. Because these finer structures a
bottom of the basin have no constraining effect on the sys
motions, the system can move easily from one to ano
local minimum in these finer structures.

IV. CONCLUSIONS

We studied the dynamics of inherent structure by the p
cess of quenching the original configuration generated by
MD simulation in the binary Lennard-Jones system n
glass transition. We showed from the MSD and van Ho
self-correlation function that the quenched configurations
not exhibit the cage effects that normally constrain the
namics of original configurations at the intermediate tim
We showed from the time correlation functions, both the s
and coherent part, that the long-time relaxation remains
same in the quench process in allk values studied, but the

FIG. 7. The incoherent correlation functionFs(k,t) ~top! and
Fs

Q(k,t) ~bottom!, calculated from unquenched and quenched c
figurations at differentk values fromksAA50.67 to 19.53~from the
upper curve to the lower ones!.
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short-time dynamics within the potential basin is nea
eliminated. We conclude that the collective, slow relaxat
is due to crossing over different potential basins by the s
tem phase point.

We acknowledge that our result, obtained from exami
tion of collective motions of particles at different leng
scale (k values!, is the same as the conclusion reached
Schroderet al. in Ref. @15# and by Sastry, Debenedetti, an
Stillinger in Ref. @27#. They examined the self part of th
correlation function of inherent structure at onek value and
different temperatures, and found that the long-timea relax-
ation of the test particle is the result of the phase point of
system exploring different potential basins. We would like
note that, beyond the short-time region, motions of the
particle at high densities and very low temperatures
strongly coupled to the density fluctuation. Therefore,
long-time relaxation of the test particle is essentially dom
nated by the relaxation of the density fluctuation. It is th
not surprising that our result obtained from examination
the k dependence of the density correlation function is sim
lar to that obtained from calculating the test particle corre
tion function.
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- FIG. 8. The relaxation timet(k), stretch exponentb(k), and the
Debye-Waller factorA(k) extracted from the incoherent correlatio
functions,Fs(k,t) andFs

Q(k,t), by fitting the long-time part of the
respective correlation functions with a stretched exponential fu
tion.
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