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Dynamics of inherent structure in supercooled liquids near kinetic glass transition
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We present a description of the dynamics of a supercooled binary Lennard-Jones liquid in term of the
potential landscape of the system. The slowing down of the dynamics in supercooled liquids near the kinetic
glass transition is related to the existence of basins in the potential landscape. The inherent structures that are
the local potential minima in the configuration space obtained by a quench process are employed to represent
the configurations of the basins. We present time correlation functions of the inherent structure, both the self
and the coherent part, as a function of wave vector. We also calculated the mean-square displacement, and the
non-Gaussian parameter of the van Hove self-correlation function. Compared with the dynamics of original
configurations, the short-time relaxation has almost been eliminated by the quench process. However, the
long-time « relaxations remain essentially the same. We conclude that the long:tirkaxation is the result
of cross-basin transition in the potential landscape in the configuration space.
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[. INTRODUCTION sin and only focus on the long time interbasin relaxation. The
dynamics of inherent structure has been studied in different
It is well known that the relaxation dynamics of the su- ways. The interbasin transition was identified by examining
percooled liquids near kinetic glass transition is a two-steghe level changes of the energy of inherent strucfus, the
process. This characteristic feature has been shown by tiBean square displacement of the inherent structure was
mode-coupling theory1,2], computer molecular-dynamics Shown without a plateau because of the lack of constrained
simulation[3], and laboratory experiments involving glass- motions (rattling) within basins[14]. More recently, Schro-
forming liquidgfor review see4]). From the kinetic theo- der et al. [15] studied the self-time correlation functions of
retic point of view, the short-time dynamics within a pico- the quenched configurations at one valu& ahd at different
second time scale is describable by the relaxation of the tedg¢mperatures and got the conclusion that the long-time relax-
particle motion within a cage formed by nearest-neighboringfition is due to the interbasin transitions in the potential land-
particles in the liquid, which can be described by a normascape. We know the interbasin transitions are the collective
kinetic theory of liquid, taking into account the cage effectmotions of particles in the system. In order to have a clearer
[5]. The long-time dynamics« relaxation is pictured as the ~Picture of the mterbasm transitions, one has to investigate the
collective relaxation of the initial cage and is insensitive tocollective motions by calculating the coherent correlation
the specific short-time microscopic dynamics of the systenfunctions of inherent structure in different length scales.
within the cagg6]. In this paper, we present the time correlation functions qf
The potential landscape view of the dynamics of superlhe inherent structure, both the self and cohgrent part, at Q|f-
cooled liquids near kinetic glass transition was presented Erentk values. The two-step relaxations with a plateau in
long time agd’7,8]. But recently it has attracted much atten- between, shown in the time correlation function of the origi-
tions both from the dynamic and thermodynamic approachegal configurations, change to one-step relaxations without a
[9-11]. According to these views, the slowing down of the Plateau. This one-step decay curve can be characterized by a
long-time relaxation process was related to the presence &tretched exponential function having the same relaxation
the potential basins in the configuration space and could béme 7 and similar stretch exponeyt with the « relaxation
regarded as the configurational transitions between these bt the original configurations. This is a direct evidence from
sins. The short-time relaxation was regarded as the explordbe coherent correlation function that therelaxation in the
tion of the phase points of the system within the same posupercooled liquids is due to the relaxation of cross-basin
tential basin. The lowering of the temperature of the systenPlOCESSes.
does not affect the intrabasin movement too much, but will
make the crossing between basins more dh_‘ficu_lt and time Il. NUMERICAL SIMULATION
consuming. We comment here that in the kinetic theoretic
picture, the long-time collective cage relaxation is not a local The model system for glass-forming liquids we studied is
relaxation phenomenon, but should be considered globally afe well-known binary Lennard-Jones mixture introduced by
interbasin transitions in the potential landscape. Kob and Andersel16,17. Both types of classical particles
In order to study the long-time interbasin transitions in theA andB have the same mass and interact by a Lennard-Jones
potential landscape, one has to introduce the inherent strupotential, i.e.,V (1) =4€,4[(T4p/1) = (0,5/r)®] with
ture, which is defined as the local potential minima in thea,Be{A,B} and eaa=1.0, ocpp=1.0, €Ag=1.5, 045=0.8,
configuration space, as the best configurational representagg= 0.5, 0gg=0.88. In the following, all the results will be
tion of the corresponding bas[i2]. Then, by studying the given in reduced units, i.e., length in units®f , energy in
changing of the inherent structure with time, one can elimi-units of e, Mass in units of the mass of partickeor B,
nate most of the short-time relaxation process within the bawhich has been chosen as 1, and time in units of
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i ' ' ' - ' - plateau. This is because the quench process eliminates the
system vibrational movement inside the trapping basin. At a
large elapsed time segment in the diffusion redioml000,

the MSD’s of these two configurations overlap with each
other showing the different motions between these two con-
figurations, which are the small-distance vibrational move-

1 ment within the basin, can be ignored compared with the
structural relaxation as a result of large distance excursions.
© 8 We define the van Hove self-correlation function[26]

1
o Gy(r)=y( 2 ar+r0-r®]), (1)
o o oUnquenched E !

oQuenched o ) )
) where the position of the jth particte(t) can be a quenched

- , , , , , , or unquenched configuration. For the convenience in the fol-
« - " “ time " N “ “ lowing discussion without further explanation, the quantities
, , calculated from quenched and original unquenched configu-

FIG. 1. The mean-square displacemeMSD) as a function of  a4iqng will be denoted with and without lab€l, respec-

\ inctior r
elapsed time for both unquenched and quenched configurations. Ty, o ‘=41 the isotropic system, the van Hove self-correlation

plateau that indicates the cage effects in the unquenched MSD di nction can be written as a function of radial distamcas

appears in the quenched MSD curves. They both show the sarrE (r.t). Then, the quantity 412G (1), integrated over the
long-time diffusion limit. Sy ’ TSV R - .
gt usion fimt solid angle, denotes the distribution function of particle dis-

(mo',zl-\AleAA)llz- The Boltzmann constarkz has been set to placgmemr within time t. Compared with thg distr?bution.

1. The simulation box mixed 800 particles of typand 200 function of displacement of unquenched conﬁgurqmor_ls, Fig.
particles of typeB. The size of the cubic box was held fixed 2 Shows that the quench process makes the distribution peak
at L=9.4 with a periodic boundary condition. The critical Shift to the left and become sharper, indicating that the dis-
temperature for a diverging relaxation time in this system igP'aceément of quenched configurations is much less than that
T.=0.435. In our simulation, the simulation time-step size is°f the original configurations. This can also be seen from the
0.0015, the temperature is set Bt 0.446, coupled with a MSD curve(see Fig. 1, which is the second moment of the
Nose-Hoover thermost#t8]. distribution func'gon. In the intermediate times<6<120),

We denote the molecular-dymami¢sID) trajectory as the gh%pe of &r 'Gs(r,t) chan'ge's much slower than that.of
[rN(t),pN(t)], with N the total number of particles. From 4Trr Gg(r,t). This §Iower variation of thg curve shape with
each saved configuratia(t) at timet, the corresponding time causes the existence of the plateau in the MSD curve. In
inherent structureN?(t) was calculated as the local potential the long-time regime t¢>120), the large displacements be-
minima in the configuration space by the process of quenctf0me more probable in both cases. At the largest titne (
The quench was accomplished by using a standard 1350), the two curve§4mr?Gy(r,t),4mr°GS(r,t)] be-
conjugate-gradient minimization algorithfa9]. We studied ~come essentially the same. This can also be seen from the
the two types of trajectories: unquenched and quenched trgimilar value of the non-Gaussian parametegft) (Fig. 3) at
jectories, by comparing some meaningful dynamic quantitiehat time. The non-Gaussian parameter is define@®a22]
calculated from these two trajectories. The mean square dis-

placement between these two configuratiods;(t) 3(r4(t))
—rJQ(t)|2> gives the mean value of 0.0142 with a standard a(t)= ————— 2)
deviation of 0.0015, which is related to the average size of S(re(t)

trapping basin. The size of the trapping basin can also be

characterized by the plateau val@about 0.03 of mean In the short-time free streaming and long-time diffusion lim-

square displacemerfMSD) of unquenched configurations its, the van Hove self-correlation function is a Gaussian func-
discussed in the next paragraph. We can see these two valué@n with r [21], then the non-Gaussian parameig(t) =0.

are of the similar magnitude. In the immediate time, the van Hove self-correlation function

The mean square displacemeni¥SD) (Ar?(t))  shows a clear non-Gaussian behavior. The non-Guassian pa-
=<|rj(t)—rj(0)|2> of the unquenched configuration as arameter of quenched configurations have a large value in the
function of elapsed time is shown in Fig. 1 in a log-log plot. short time and intermediate time; only in the long time do the
The MSD of quenched configurations, shown in the samgalues become similar as that of the unquenched configura-
figure, is calculated by replacing the configuratigt) in the  tions.
formula of MSD by the quenched configuratioi(t). The
existence of a plateau of the unquenched configuration . RESULTS
shows the trapping effect of the system inside a basin in the
potential landscape. For the quenched configuration, the We calculated the coherent time correlation function of
MSD is a monotonic increasing function with time without a density fluctuation by
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FIG. 3. The non-Gaussian parametatgt) in the intermediate
and long-time regime for the two types of configurations. While at
the short-time regime, the non-Gaussian parameters of the two con-
figurations are quite different, at the long-time regime they con-
verge to the same asymptotic limit.

normal two-step decay, with a short-time decay first to a
plateau characterized bykadependent Debye-Waller factor
A(k) and then anx relaxation away from the plateau. The
appearance of the Debye-Waller factor is the result of the

FIG. 2. The distribution function of the test particle displace- cage effect, which constrains the system into a basin area in
ments, 47r2G4(r ,t), at different time segments. The van Hove self- the configuration space. On the contrary, The curve of

correlation function isG(r,t) =1/N(Z;8[r +r;(0)—r;(t)]). While
at the intermediate time segment{6—-120), the time variation of
distribution functions of two configurations are quite differésee

FQ(k,t)/SR(k) shows a monotonic decay without a plateau.
The short-time decay in the original correlation function is
eliminated by the quench process. The decay of the quenched

text), at the long-time segment% 120), the time variations are correlation function can be regarded as the system movement

similar in the two configurations.

by crossing different basins in the configuration space.

1
Flk=§ 2 (@ -knO-rOn, @  *

4

wherei, j denote the indices of the particles, and the configu:

ration rN(t) can be quenched or unquenched. The initial s

value of F(k,t) is the static structure factol(k,t=0)
=S(k). Figure 4 shows the static structure fac&{k) and

S9(k). The two curves display essentially the same first anc ,,|

second diffraction peaks, but a significant difference at large<
k, where the quenched structure factor shows sharper peaw 2
than the original one. The similarity of the first two peaks
indicates that the two configurations are similar at the lengtt '
scale >0.5055, the quench process only changes the posi
tions of the particles in the length scale of less thamrQ,5
This agrees with the MSD value between quenched and ur
guenched configurations discussed above. Since the structt

45

- Unquenched&:

—Quenched :

1@

factor is an average function of the configurations, the more

smooth peaks at higk-value for the unquenched configura-
tions indicate the more averaging effect due to the rattling
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FIG. 4. The structure factoB(k) and S®(k), calculated from

movement around the quenched configurations with a rathihquenched and quenched configurations. Note that the first two

small distance.

The normalized F(k,t)/S(k) and FO(k,t)/S*(k) are
shown in Fig. 5 atkops=6.68. TheF(k,t)/S(k) shows a

diffraction peaks are essentially the same. But at the largdues,
the quenche®?(k) displays sharper higher-order diffraction peaks.
The inset shows the enlarged first diffraction peak region.
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FIG. 5. The normalized coherent correlation function 0 z ¢ ¢ ® 10 s " * ® 2
F(k,t)/S(k) and FO(k,t)/SR(k) at the reducedk value indicated.
While the unquenched configurations show a two-step relaxatioc '[8 8 o' 0 00 g g oo o o
(fast and slow, the quenched configurations show only the slow osf 0© o Bg]
relaxation. o) o
20,6- o o b
To qualify and compare the long-time decay of I, o) © o |
F(k,t)/S(k) andF(k,t)/S%(k), we fit the long-time part of ‘ o o5
the correlation function with the stretched exponential func- ozf O o
tion A(k)exp( (t/7(k))?™). Figure 6 shows that relaxation e
time 7, stretch exponenB, and Debye-Waller factoA(k) e 4 © 8 k&OAA ’oomoow w0

oscillate with the same period as the structure factor. This

agrees qualitatively with the result of extended simple point FIG. 6. The relaxation time(k), stretch exponeng(k), and the
charge(SPC/B water[23] and (MCT) theory[24]. Compar-  Debye-Waller factoA(k) extracted from the normalized coherent
ing the fitting results forF (k,t)/S(k) and F9(k,t)/S°(k),  time correlation functionF(k,t)/S(k) and F(k,t)/S%(k), by fit-

the relaxation times are essentially the same for all tke ting the long-time part of the respective correlation functions with a
values, the exponer demonstrates a similar variation with stretched exponential function. While thend 3 are essentially the

k but a level difference foko,,>10. The Debye-Waller Same for the two configurations, the Debye-Waller factors are sig-
factor for the quenched system is much closer to unity thamificantly different. The quenched Debye-Waller factors are essen-

the unquenched system due to the elimination of the Shontjally unity at all k signifying that the system is not structurally

time dynamics. We note that the thedependence of the arrested in the quenched configuration. It should be noted that there

Debye-Waller factor has been reduced and the oscillation h 'g k-dependent oscillation of all three parameters associated with
been damped compared with the unquenched system. But gyariation OfS(k).

k dependence of the re'Iaxation t'ime and stretch exponent Ip5,26). The long-time relaxation is separated from the short-
the quenched system is essentially the same as in the Ufime regime by a plateau indicating the trapping effect of

guenched system. The difference between the quench%ges_ As expected, the plateaLF@(k,t) disappears as the

Debye-Waller factor and the unity indicates that the shortyegyt of the quench process to remove the rattling movement

time dynamics is not eliminated completely or the basingai has been show in RdfL5].

roughness of the potential surface in the configurat@on Space The quantitative comparison of the two incoherent time
cannot be reduced by the quench process. This point will beqrelation functions can be studied by fitting the long-time
discussed further. _ _ _ part with the stretched exponential  function
Tr_\e incoherent t|me correlatl_on funcnon studies the dy-A(k)eXp{_[t/T(k)]B(k)}_ Figure 8 shows the relaxation time
namics of a test particle, which is defined as 7(k), stretched exponerg(k), and the Debye-Waller factor
Fe(k,t)=(exd —k-{r;(t)—r;(0)}1), (4  A(k). The relaxation time is essentially the same for both
quenched and original configurations. THéK) increase to
wherer|(t) is the position of the jth particle, which can be a the unity reaching diffusion regime &slecreases. The small
quenched or unquenched configuration. The initial value ofjifference of the values of two configurations and the fact
F<(k,t=0) is one. Figure 7 shows they(k,t) andFJ(k,t)  that the Debye-Waller factor of the quenched configurations
at differentk values.F4(k,t) is found to display the typical is less than one indicates that, in the temperature investi-
two-step relaxation, where the short-time decay is attributedated, the long-time dynamics cannot be separated com-
to the vibrational relaxation of particles with different fre- pletely from the short-time dynamics. This is a similar effect
guencies within cages formed by neighboring particlesas in the coherent correlation function, which means there is
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FIG. 7. The incoherent correlation functidfy(k,t) (top) and San

FSQ(k,t) (bottom), calculated from unquenched and quenched con-  £1G. g, The relaxation time(k), stretch exponeng(k), and the

figurations at differenk values fromkoax=0.67 to 19.53fromthe  pepye-waller factoA(k) extracted from the incoherent correlation
upper curve to the lower ones functions,F4(k,t) andF2(k,t), by fitting the long-time part of the

] ) respective correlation functions with a stretched exponential func-
another relaxation channel other than theelaxation gen- tjon.
erated by the crossing-basin process. The existence of a ] ) o . o
short-time decay channel can also be seen from the presen%@_or_t't'me dynamics within the potential basin is nearly
of the initial rapidly increasing segment of the MSD curve Ofghmmated. We_conclude .that the collec_:t|ve, s.low relaxation
the quenched configurations. One of this short time deca{p due to crossing over different potential basins by the sys-
channel could be the existence of the finer structures at th rr\}\/phaslf: p0||nt(.j that it obtained f .
bottom of the potential basin. These finer structures have € acknowledge that our resuft, obtained Trom examina-

lon of collective motions of particles at different length

small surface roughness that cannot be felt by the system i

cale k valueg, is the same as the conclusion reached by
that temperature. But when we quench the system, the resu schroderet al. in Ref. [15] and by Sastry, Debenedetti, and

ant min_imum location can be one of the _basins belonging t tilinger in Ref.[27]. They examined the self part of the
these finer structures. Because these finer structures at t Brrelation function of inherent structure at okealue and

bottom of the basin have no constraining effect on the systergiferent temperatures, and found that the long-timeelax-
motions, the system can move easily from one to anothegion of the test particle is the result of the phase point of the

local minimum in these finer structures. system exploring different potential basins. We would like to
note that, beyond the short-time region, motions of the test
IV. CONCLUSIONS particle at high densities and very low temperatures are

strongly coupled to the density fluctuation. Therefore, the
We studied the dynamics of inherent structure by the protong-time relaxation of the test particle is essentially domi-

cess of quenching the original configuration generated by theated by the relaxation of the density fluctuation. It is then
MD simulation in the binary Lennard-Jones system neamot surprising that our result obtained from examination of
glass transition. We showed from the MSD and van Hovehe k dependence of the density correlation function is simi-
self-correlation function that the quenched configurations ddar to that obtained from calculating the test particle correla-
not exhibit the cage effects that normally constrain the dytion function.
namics of original configurations at the intermediate time.
We showed from the time correlation functions, both the self ACKNOWLEDGMENT
and coherent part, that the long-time relaxation remains the This research was supported by a grant from the Materials
same in the quench process in kllalues studied, but the Chemistry Research Program of the U.S. DOE.
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